Package: rsofun 5.0.0.9000

Benjamin Stocker

rsofun: The P-Model and BiomeE Modelling Framework

Implements the Simulating Optimal FUNctioning framework for site-scale simulations of ecosystem processes, including model calibration. It contains 'Fortran 90' modules for the P-model (Stocker et al. (2020) <doi:10.5194/gmd-13-1545-2020>), SPLASH (Davis et al. (2017) <doi:10.5194/gmd-10-689-2017>) and BiomeE (Weng et al. (2015) <doi:10.5194/bg-12-2655-2015>).

Authors:Benjamin Stocker [aut, cre], Koen Hufkens [aut], Josefa Arán Paredes [aut], Laura Marqués [ctb], Mayeul Marcadella [ctb], Ensheng Weng [ctb], Fabian Bernhard [aut], Geocomputation and Earth Observation, University of Bern [cph, fnd]

rsofun_5.0.0.9000.tar.gz
rsofun_5.0.0.9000.zip(r-4.5)rsofun_5.0.0.9000.zip(r-4.4)rsofun_5.0.0.9000.zip(r-4.3)
rsofun_5.0.0.9000.tgz(r-4.5-x86_64)rsofun_5.0.0.9000.tgz(r-4.5-arm64)rsofun_5.0.0.9000.tgz(r-4.4-x86_64)rsofun_5.0.0.9000.tgz(r-4.4-arm64)rsofun_5.0.0.9000.tgz(r-4.3-x86_64)rsofun_5.0.0.9000.tgz(r-4.3-arm64)
rsofun_5.0.0.9000.tar.gz(r-4.5-noble)rsofun_5.0.0.9000.tar.gz(r-4.4-noble)
rsofun.pdf |rsofun.html
rsofun/json (API)

# Install 'rsofun' in R:
install.packages('rsofun', repos = c('https://geco-bern.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/geco-bern/rsofun/issues

Uses libs:
  • fortran– Runtime library for GNU Fortran applications
Datasets:

On CRAN:

Conda:

dgvmgrowthmodelingp-modelsimulationvegetation-dynamicsfortran

8.85 score 27 stars 119 scripts 136 downloads 9 exports 121 dependencies

Last updated 2 days agofrom:d6099e327c. Checks:12 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 28 2025
R-4.5-win-x86_64OKMar 28 2025
R-4.5-mac-x86_64OKMar 28 2025
R-4.5-mac-aarch64OKMar 28 2025
R-4.5-linux-x86_64OKMar 28 2025
R-4.4-win-x86_64OKMar 28 2025
R-4.4-mac-x86_64OKMar 28 2025
R-4.4-mac-aarch64OKMar 28 2025
R-4.4-linux-x86_64OKMar 28 2025
R-4.3-win-x86_64OKMar 28 2025
R-4.3-mac-x86_64OKMar 28 2025
R-4.3-mac-aarch64OKMar 28 2025

Exports:calib_sofuncost_likelihood_biomeecost_likelihood_pmodelcost_rmse_biomeecost_rmse_pmodelrun_biomee_f_bysiterun_pmodel_f_bysiterunread_biomee_frunread_pmodel_f

Dependencies:apeaskpassbase64encBayesianToolsBHbootbridgesamplingBrobdingnagbslibcachemcallrclicodacodetoolscolorspacecommonmarkcpp11crayoncrosstalkcurldata.tableDHARMadigestdoParalleldplyrellipseemulatorevaluateexpmfansifarverfastmapfontawesomeforeachfsgapgap.datasetsgenericsGenSAggplot2gluegmmgtablehighrhtmltoolshtmlwidgetshttpuvhttrIDPmiscisobanditeratorsjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclelme4lmtestmagrittrMASSMatrixmemoisemgcvmimeminqamsmmultidplyrmunsellmvtnormnlmenloptrnumDerivopensslpillarpkgconfigplotlyplyrprocessxpromisespspurrrqgamqsR6RApiSerializerappdirsrbibutilsRColorBrewerRcppRcppEigenRcppParallelRdpackreformulasrlangrmarkdownsandwichsassscalesshinysourcetoolsstringfishstringistringrsurvivalsystibbletidyrtidyselecttinytextmvtnormutf8vctrsviridisLitewithrxfunxtableyamlzoo

BiomeE usage

Rendered frombiomee_use.Rmdusingknitr::rmarkdownon Mar 28 2025.

Last update: 2024-11-26
Started: 2022-11-25

Data format

Rendered fromdata_format.Rmdusingknitr::rmarkdownon Mar 28 2025.

Last update: 2024-11-25
Started: 2023-07-25

P-model usage

Rendered frompmodel_use.Rmdusingknitr::rmarkdownon Mar 28 2025.

Last update: 2025-02-07
Started: 2021-09-29

Parameter calibration and cost functions

Rendered fromnew_cost_function.Rmdusingknitr::rmarkdownon Mar 28 2025.

Last update: 2023-06-08
Started: 2022-11-24

Sensitivity analysis and calibration interpretation

Rendered fromsensitivity_analysis.Rmdusingknitr::rmarkdownon Mar 28 2025.

Last update: 2025-02-07
Started: 2023-05-26